地热井固井中硅酸盐水泥体系的技术现状及发展趋势
CSTR:
作者:
作者单位:

1.成都理工大学地质灾害防治与地质环境保护全国重点实验室,四川 成都 610059;2.中国地质大学(北京)工程技术学院,北京 100083;3.河南大学建筑工程学院,河南 郑州 475004

作者简介:

通讯作者:

中图分类号:

TE256+.6;P634

基金项目:

四川省科技计划资助项目(编号:2023NSFSC0781);国家自然科学基金青年项目(编号:41902322);雄安新区科技创新专项(编号:2022XAGG0500);成都理工大学珠峰科学研究计划(编号:80000-2020ZF11411)


Technical status and trends of portland cement system in geothermal well cementing
Author:
Affiliation:

1.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu Sichuan 610059, China;2.School of Engineering and Technology, China University of Geosciences, Beijing 100083, China;3.School of Civil Engineering and Architecture, Henan University, Zhengzhou Henan 475004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在地热井建井过程中,为保证出口水温、提高井筒耐久性,固井不可或缺。地热井固井目前仍主要采用G级油井水泥,但地温梯度大、钻遇破碎裂隙性地层多以及存在腐蚀性介质等复杂环境,对传统硅酸盐水泥体系提出更严苛的性能要求。本文从抗高温、耐腐蚀及低密度三方面对硅酸盐水泥体系的现有技术效果及未来发展趋势进行了梳理,结果表明:克服水泥石高温性能劣化的最常用手段为掺入硅粉或硅砂,通过降低体系钙硅比调整水化产物类型以减缓强度衰退;水泥防腐剂已从单一的有机/无机惰性材料,发展为水性胶乳、酸响应型胶乳以及有机/无机复合多元防腐体系;通过吸水增黏物质、低密度减轻剂或充气泡沫等形成的轻质水泥体系,仍存在密度保持难、强度发展慢、稳定性差等缺点。未来应着重开展水泥石强度衰退机理的主控因素分析和新型强度衰退抑制剂的研发;建立多相动态冲刷条件,开展水泥石本体及胶结二界面受腐蚀机理研究;兼顾地热井固井复杂环境,辅以纤维等堵漏材料,形成耐高温抗腐蚀轻质防漏水泥体系。针对地热井固井环境,全面梳理现有硅酸盐水泥体系的技术现状及发展趋势,可为地热水泥的研发方向提供参考。

    Abstract:

    In geothermal well construction, cementing is indispensable to ensure the outlet water temperature and enhance wellbore durability. Currently, class G cement remains the primary choice for geothermal well cementing. However, complex environments such as large geothermal gradients, fractured formations and the presence of corrosive media require more strict performance requirements for traditional portland cement systems. This paper analyzes existing technical strategies and future development trends of portland cement systems from three aspects: high-temperature resistance, corrosion inhibition, and low-density performance. The results indicate that the most commonly used method to overcome the deterioration of high-temperature performance of cement is adding silica powder or silica sand and reducing the calcium silicon ratio of the system to adjust the hydration product type. Corrosion inhibitors have evolved from single organic/inorganic inert materials to water-based latex, acid responsive latex, and organic/inorganic composite multi-component anti-corrosion systems. The lightweight cement system formed by absorbing water and tackifier, low density reducing agent or foam still has some shortcomings, such as difficult density maintenance, slow strength development, poor stability, etc. In the future, emphasis should be placed on analyzing the main controlling factors of the strength degradation mechanism of cement and developing new strength degradation inhibitors. Establish multiphase dynamic corrosion conditions and conduct research on the corrosion mechanism of cement stone body and bonding interface. Forming a high-temperature resistant, corrosion-resistant, lightweight leak proof cement system by taking into account the complex environment of geothermal cementing and supplementing with fiber or other sealing materials. Facing the geothermal cementing environment, a comprehensive understanding of the current technical status and development trends of the existing portland cement system can provide reference for the research and development direction of geothermal cement.

    参考文献
    相似文献
    引证文献
引用本文

陈瑶,谭慧静,王胜,等.地热井固井中硅酸盐水泥体系的技术现状及发展趋势[J].钻探工程,2025,52(3):1-11.
CHEN Yao, TAN Huijing, WANG Sheng, et al. Technical status and trends of portland cement system in geothermal well cementing[J]. Drilling Engineering, 2025,52(3):1-11.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-23
  • 最后修改日期:2025-03-25
  • 录用日期:2025-04-10
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码