岩石强度随钻预测及其机制解释研究
DOI:
CSTR:
作者:
作者单位:

成都理工大学环境与土木工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

珠峰科学研究计划(编号:80000-2020ZF11411)


Study on prediction of rock strength while drilling and its mechanism interpretation
Author:
Affiliation:

College of Environmental and Civil Engineering,Chengdu University of Technology,Chengdu Sichuan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确评估岩石强度,尤其是在隧道施工过程中的实时强度预测,是确保工程安全和优化设计的关键基础。随着智能化施工技术的发展,基于随钻参数的机器学习预测方法在岩石强度评估领域展现出巨大潜力。然而,传统机器学习模型的黑箱特性限制了其在工程实践中的可信度和应用价值。为此,本研究首次提出了一种基于可解释人工智能的随钻参数岩石强度预测方法,通过SHAP分析技术解析XGBoost模型的决策机制,实现预测过程的透明化和可解释性。研究结果表明,构建的XGBoost模型在岩石强度预测方面取得了良好效果,测试集预测精度达到75.71%。更重要的是,SHAP值分析定量揭示了各输入参数对预测结果的贡献机制,发现钻速均值以25.67%的贡献度占据主导地位,而参数变异性指标(标准差类)的总贡献度高达49.70%,这一发现突破了传统认知中仅关注参数均值的局限性。本研究揭示了随钻参数随钻进深度变化的一般规律,实现了岩石强度随钻预测,对推动地下工程参数预测的可解释性和工程应用具有重要意义。

    Abstract:

    Accurate evaluation of rock strength, especially real-time strength prediction during tunnel construction, is a key basis for ensuring engineering safety and optimal design. With the development of intelligent construction technology, machine learning prediction methods based on drilling parameters have shown great potential in the field of rock strength assessment. However, the black box characteristics of traditional machine learning models limit their credibility and application value in engineering practice. To this end, this study proposes a rock strength prediction method based on interpretable artificial intelligence for the first time. The decision-making mechanism of the XGBoost model is analyzed by SHAP analysis technology to achieve transparency and interpretability of the prediction process. The results show that the XGBoost model has achieved good results in rock strength prediction, and the prediction accuracy of the test set reaches 75.71 %. More importantly, the SHAP value analysis quantitatively reveals the contribution mechanism of each input parameter to the prediction results. It is found that the average drilling speed is dominated by the contribution of 25.67 %, while the total contribution of the parameter variability index ( standard deviation class ) is as high as 49.70 %. This finding breaks through the limitation of traditional cognition that only the mean of parameters is concerned. This study reveals the general law of drilling parameters changing with drilling depth, realizes the prediction of rock strength while drilling, and is of great significance to promote the interpretability and engineering application of underground engineering parameter prediction.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-30
  • 最后修改日期:2025-07-17
  • 录用日期:2025-08-04
  • 在线发布日期:
  • 出版日期:
文章二维码