基于因子分析的岩性识别智能模型对比
DOI:
CSTR:
作者:
作者单位:

成都理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

四川省自然科学基金项目青年基金,基于数字孪生的动态时变钻进工况自适应迁移模型研究


Comparative Study of Intelligent Lithology Identification Models Based on Factor Analysis
Author:
Affiliation:

1.College of Environment and Civil Engineering,Chengdu University of Technology,Chengdu Sichuan;2.School of Mechanical and Electrical Engineering,Chengdu University of Technology,Chengdu Sichuan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    岩性识别是地质勘探与开发过程十分关键的过程,在地质资源预测和评价过程中发挥了十分关键的作用。随着地质勘探行业的发展,传统的岩性识别受制于时间与空间的局限已无法满足日益增长的数据规模和维数。因此,如今急需对岩性识别的智能预测进行深入研究,以推动岩性识别朝着数字化、智能化、时效化的方向发展。本文以实现基于钻井参数的智能岩性识别预测为目标,使用逻辑回归、SVM支持向量机、K 近邻算法、随机森林、神经网络五种算法分别建立了基于钻井参数的岩性智能识别预测模型,实现了钻遇地层的智能预测,主要研究内容如下:设计了基于钻井数据的区域性地层识别模型。通过对原始数据进行数据预处理,然后对地层参数和其他参数进行因子分析,参数经过因子分析降维后通过五种机器算法建模,建立了以钻井参数矩阵为输入,岩性分类识别和地层参数预测为输出的岩性智能识别模型。经实验表明,五种算法下岩性识别在测试集上的准确率和F1分数大部分达到70%以上,个别准确率较低但也在60%左右,五个模型地层参数预测的指标MAE和RMSE大部分都在1之下,识别预测准确。

    Abstract:

    Lithology identification is a very critical process in the process of geological exploration and development, and plays a very key role in the process of geological resource prediction and evaluation. With the development of the geological exploration industry, the traditional lithology identification is limited by time and space, and can no longer meet the increasing data scale and dimensionality. Therefore, there is an urgent need for in-depth research on the intelligent prediction of lithology identification, so as to promote the development of lithology identification in the direction of digitalization, intelligence and timeliness. In this paper, with the goal of realizing intelligent lithology identification and prediction based on drilling parameters, five algorithms are used to establish intelligent lithology identification and prediction models based on drilling parameters by using five algorithms: logistic regression, SVM support vector machine, K-nearest neighbor algorithm, random forest and neural network, respectively, to realize the intelligent prediction of drilling encounters, and the main research contents are as follows: A regional stratigraphic identification model based on drilling data was designed. Through the data preprocessing of the original data, and then the factor analysis of the formation parameters and other parameters, the parameters were reduced by factor analysis and then modeled by five machine algorithms, and an intelligent identification model of lithology was established with the drilling parameter matrix as the input, the lithology classification identification and formation parameter prediction as the output. Experiments show that most of the accuracy and F1 score of lithology identification on the test set under the five algorithms reach more than 70%, and the individual accuracy is low but also about 60%, and most of the indicators MAE and RMSE predicted by the stratigraphic parameters of the five models are below 1, and the identification and prediction are accurate.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-15
  • 最后修改日期:2025-07-16
  • 录用日期:2025-07-16
  • 在线发布日期:
  • 出版日期:
文章二维码